Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 38(11): 1585-92, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16258626

RESUMO

Lactococcus lactis, the model lactic acid bacterium, is a good candidate for heterologous protein production in both foodstuffs and the digestive tract. We attempted to produce Streptomyces tendae antifungal protein 1 (Afp1) in L. lactis with the objective of constructing a strain able to limit fungal growth. Since Afp1 activity requires disulfide bond (DSB) formation and since intracellular redox conditions are reportedly unfavorable for DSB formation in prokaryotes, Afp1 was produced as a secreted form. An inducible expression-secretion system was used to drive Afp1 secretion by L. lactis; Afp1 was fused or not with LEISSTCDA, a synthetic propeptide (LEISS) that has been described to be a secretion enhancer. Production of Afp1 alone was not achieved, but production of LEISS-Afp1 was confirmed by Western blot and immunodetection with anti-Afp1 antibodies. This protein (molecular mass: 9.8 kDa) is the smallest non-bacteriocin heterologous protein ever reported to be secreted in L. lactis via the Sec-dependent pathway. However, no anti-fungal activity was detected, even in concentrated samples of induced supernatant. This could be due to a too low secretion yield of Afp1 in L. lactis, to the absence of DSB formation, or to an improper DSB formation involving the additional cysteine residue included in LEISS propeptide. This raises questions about size limits, conformation problems, and protein secretion yields in L. lactis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Lactococcus lactis/metabolismo , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Western Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Testes de Sensibilidade Microbiana , Paecilomyces/efeitos dos fármacos , Plasmídeos/genética , Trichophyton/efeitos dos fármacos
2.
Braz. j. med. biol. res ; 38(11): 1585-1592, Nov. 2005.
Artigo em Inglês | LILACS | ID: lil-414712

RESUMO

Lactococcus lactis, the model lactic acid bacterium, is a good candidate for heterologous protein production in both foodstuffs and the digestive tract. We attempted to produce Streptomyces tendae antifungal protein 1 (Afp1) in L. lactis with the objective of constructing a strain able to limit fungal growth. Since Afp1 activity requires disulfide bond (DSB) formation and since intracellular redox conditions are reportedly unfavorable for DSB formation in prokaryotes, Afp1 was produced as a secreted form. An inducible expression-secretion system was used to drive Afp1 secretion by L. lactis; Afp1 was fused or not with LEISSTCDA, a synthetic propeptide (LEISS) that has been described to be a secretion enhancer. Production of Afp1 alone was not achieved, but production of LEISS-Afp1 was confirmed by Western blot and immunodetection with anti-Afp1 antibodies. This protein (molecular mass: 9.8 kDa) is the smallest non-bacteriocin heterologous protein ever reported to be secreted in L. lactis via the Sec-dependent pathway. However, no anti-fungal activity was detected, even in concentrated samples of induced supernatant. This could be due to a too low secretion yield of Afp1 in L. lactis, to the absence of DSB formation, or to an improper DSB formation involving the additional cysteine residue included in LEISS propeptide. This raises questions about size limits, conformation problems, and protein secretion yields in L. lactis.


Assuntos
Lactococcus lactis/metabolismo , Proteínas de Bactérias , Proteínas de Transporte , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Western Blotting , Testes de Sensibilidade Microbiana , Paecilomyces/efeitos dos fármacos , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Trichophyton/efeitos dos fármacos
3.
Gut ; 52(9): 1297-303, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12912861

RESUMO

BACKGROUND: and aims: Tumour necrosis factor alpha (TNF-alpha) induction of nuclear factor kappaB (NFkappaB) activation plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Trefoil factor family peptides TFF1, TFF2, and TFF3 exert protective, curative, and tumour suppressive functions in the gastrointestinal tract. In this study, we investigated effects of the TNF-alpha/NFkappaB regulatory pathway by TNF-alpha on expression of TFFs. METHODS: After TNF-alpha stimulation, expression of TFF genes was analysed by quantitative real time polymerase chain reaction and by reporter gene assays in the gastrointestinal tumour cell lines HT-29 and KATO III. Additionally, NFkappaB subunits and a constitutive repressive form of inhibitory factor kappaB (IkappaB) were transiently coexpressed. In vivo, morphological changes and expression of TFF3, mucins, and NFkappaB were monitored by immunohistochemistry in a rat model of 2,4,6-trinitrobenzene sulphonic acid induced colitis. RESULTS: TNF-alpha stimulation evoked up to 10-fold reduction of TFF3 expression in the colon tumour cell line HT-29. Downregulation of reporter gene transcription of TFF3 was observed with both TNF-alpha and NFkappaB, and was reversible by IkappaB. In vivo, the increase in epithelial expression of NFkappaB coincided with reduced TFF3 expression during the acute phase of experimental colitis. CONCLUSIONS: Downregulation of intestinal trefoil factor TFF3 is caused by repression of transcription through TNF-alpha and NFkappaB activation in vitro. In IBD, perpetual activation of NFkappaB activity may contribute to ulceration and decreased wound healing through reduced TFF3.


Assuntos
NF-kappa B/fisiologia , Neuropeptídeos/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Colite/induzido quimicamente , Colite/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Genes Reporter , Células HT29 , Humanos , Luciferases/genética , Luciferases/metabolismo , Modelos Animais , NF-kappa B/antagonistas & inibidores , Neuropeptídeos/genética , Reação em Cadeia da Polimerase , Ratos , Fator Trefoil-2 , Fator Trefoil-3 , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...